
International Journal of Scientific & Engineering Research Volume 12, Issue 8, August-2021 151
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

 Compiler Construction Detail Design
Dr. Nwanze Ashioba, Ndubuife Nonso Daniel

Abstract
A compiler is a language translator that translates a program written in high level programming language to an equivalent machine
language. Compiler construction primarily comprises of some standard phases such as lexical analysis, syntax analysis,
semantics analysis, intermediate code generation, code optimization and code generation. This paper analyzes the detail design
of the various phases of compiler.

Keywords – Compiler, machine language, language translator

1.0 INTRODUCTION

The concept of compliers was introduced by

American Computer Scientist, Grace Brewster

Murray Hopper in 1952, for A-0 programming

language [1]. A compiler is a language translator that

translates or converts program written in high level

programming language like Pascal, Java, Fortran

etc., to machine code. Computer and operating

systems constitute the basic interfaces between a

programmer and the machine. [2]. The compiler

reports to the user the present of errors in the source

program and also, reads its variables from the

symbol table. The structure of a compiler is

illustrated in Figure 1.

Figure 1: Structure of a Compiler

2.0 Conceptual Framework of Compilers

A compiler operates in phases and each of which

transforms the source code form one representation

to another thereby passing its output to the next

phase. A compiler is divided into six phases, namely

lexical analyzer, syntax analyzer, semantic analyzer,

intermediate code generator, code optimizer and

code generation. The conceptual framework of a

compiler is illustrated in Figure 2.

Figure 2: Conceptual framework of a compiler

3.0 Detail Design of Compilation Phases

A common division of the compilation phases is

described as follows:

3.1 Lexical Analyzer

Lexical analyzer, also called token structure or

scanning or tokenization, scans a sequence of

characters that make up the source code and group

them into a sequence of lexical token classes like

identifier, keywords, operators, delimiter and

separators. These words that make up the source

code are called the lexemes of the programming

language. A lexeme is a sequence of character string,

in the program, that matches the pattern of token

classes in the programming language [3]. The detail

design of the lexical analyzer is shown in Figure 3.

The lexical analyzer is implemented with the lexical

analyzer tools like flex, lex, jflex and also with the

state machine.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 8, August-2021 152
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Figure 3: Detail design of the lexical analyzer

The output from the lexical analyzer is passed to the

syntax analyzer for implementation. The lexical

analyzer also forward the error messages to the error

handler and the token are stored in the symbol table.

3.2 Syntax Analyzer

The syntax analyzer, also called parse tree, creates

the syntactic structures of the source program. A

parse tree is a graphical representation of the

statement derivation. The parse tree uses the first

components of the tokens produced by the lexical

analyzer to create a tree like the intermediate

representation that shows the grammatical structure

of the token stream [4]. The syntax analyzer phase is

shown in Figure 4.

Figure 4: Detail design of syntax analyzer

Syntax analyzer is implemented using parse tree,

syntax tree, grammar and YACC. The output from

the syntax analyzer is passed to the semantic

analyzer.

3.3 Semantic Analyzer

The semantic analyzer checks whether the input

forms a sensible set of instructions in the

programming language. The large part of the

semantic analyzer consists of tracking variables,

functions and type declarations. The output from the

semantic analyzer is passed to the intermediate code

generator [4]. The detail design of the semantic

analyzer is shown in Figure 5.

Figure 5: Detail design of the semantic analyzer

The semantic analyzer uses the syntax tree and the

information in the symbol table to check the source

program for semantic consistency with the language

definition. It also gathers type information and saves

it in either the syntax tree or the symbol table for

subsequent use during intermediate code

generation.

3.4 Intermediate code generator

The intermediate code is also called a middle-level

language code. The generator represents its

instruction as a syntax tree, postfix notation and

three address codes which are expressed as

quadruples, triples and indirect triples. The detail

structure of the intermediate code generation phase

is illustrated in Figure 5.

Figure 5: Intermediate code generator

3.5 Code optimization

Code optimization is the process of transferring a

piece of code from the intermediate code generation

phase to make it more efficient without changing its

output or side effects. It attempts to improve the

intermediate code, so that a faster running machine

code can be produce. Code optimization can be

implemented by using the following techniques:

constant folding elimination, common sub-

expression elimination, variable propagation

elimination and dead code elimination. The

structure of the code optimization phase is

illustrated in Figure 6.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 8, August-2021 153
ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Figure 6: Detail design of the code optimization phase

3.6 Code generation phase

Code generation is the final phase in the compilation

process. It is the process by which a compiler’s code

generator converts some intermediate

representation of the source code to a form that can

be readily executed by a machine. The detail design

of the code generation phase is illustrated in Figure

7.

Figure 7: Detail design of the code generation phase

4.0 Compiler implementation

Summary of the implementation processes of the

compiler is illustrated in Figure 8.

Figure 8: Compiler implementation phases

5.0 CONCLUSION

This paper has outline the basics of the compilation

phases as well as detail design of the phases of a

compilation processes which are used to construct a

well-designed compiler.

REFERNECES

[1] P. Prajakta and M. Dawale (2019).

Introduction to Compiler and its phases.

International Research Journal of Engineering

and Technology (IRJET), Vol. 6, Issue 01.

[2] Md. A. Hossain, R. Rihab, H. Islam and A.

Azam (2019). A study on language

processing policies in Compiler Design.

American Journal of Engineering Research

(AJER), Vol. 8, Issue 12, pp. 105-114.

[3] A. N. Jalgeri, B. B. Jagadale and R. S. Navale

(2017). Study of Compiler Construction.

International Journal of Innovative Trends in

Engineering (IJITE), Vol. 28, issue 46, No. 2.

[4] M. Jain, N. Sehrawat and N. Munsi (2014).

Compiler Basic Design and construction.

International Journal of Computer Science and

mobile Computing (IJCSMC), Vol. 3, Issue 10,

pp. 850-852.

IJSER

http://www.ijser.org/

